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The problem of escape from a domain of attraction is applied to the case of dis- 
crete dynamical systems possessing stable and unstable fixed points. In the 
presence of noise, the otherwise stable fixed point of a nonlinear map becomes 
metastable, due to noise-induced hopping events, which eventually pass the 
unstable fixed point. Exact integral equations for the moments of the first 
passage time variable are derived, as well as an upper bound for the first 
moment. In the limit of weak noise, the integral equation for the first moment, 
i.e., the mean first passage time (MFPT),  is treated, both numerically and 
analytically. The exponential leading part of the MFPT is given by the ratio of 
the noise-induced invariant probability at the stable fixed point and unstable 
fixed point, respectively. The evaluation of the prefactor is more subtle: It is 
characterized by a jump at the exit boundaries, which is the result of a 
discontinuous boundary layer function obeying an inhomogeneous integral 
equation. The jump at the boundary is shown to be always less than one-half of 
the maximum value of the MFPT.  On the basis of a clear-cut separation of time 
scales, the MFPT is related to the escape rate to leave the domain of attraction 
and other transport coefficients, such as the diffusion coefficient. Alternatively, 
the rate can also be obtained if one evaluates the current-carrying flux that 
results if particles are continuously injected into the domain of attraction and 
captured beyond the exit boundaries. The two methods are shown to yield iden- 
tical results for the escape rate of the weak noise result for the MFPT,  respec- 
tively. As a byproduct of this study, we obtain general analytic expressions for 
the invariant probability of noisy maps with a small amount of nonlinearity. 
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1. I N T R O D U C T I O N  

The problem of escape from a locally stable attractor is ubiquitous in the 
natural sciences, most notably in the chemical kinetics of gases and con- 
densed phases and transport in nonlinear systems such as semiconductors 
or biological systems, to name but a few. A common situation in many 
dynamical systems is the presence of several states of local stability, with 
transitions among these states being induced by random forces. As a matter 
of fact, a recent issue of this journal was devoted solely to this very issue of 
escape from metastable states, (ll wherein the present state of the 
experimental and theoretical achievements and developments are reviewed. 

Nonlinear, dissipative, higher dimensional systems are known to 
possess many simultaneously coexisting basins of attraction. In continuous 
time, these systems are described by a coupled set of first-order differential 
equations 

2~=f~(x, 2)+~(t) ,  ~ =  1,..., d (1.1) 

F~(x, 2) denotes the deterministic flow of the component x~; .~ is a set of 
contral parameters, and ~ ( t )  describes the effect of a random environment. 
In general, analytic solutions of (1.1) are not accessible. In particular, the 
problem of escape is generally too difficult to be studied analytically on the 
level of a nonlinear, multidimensional flow. (z3) Recent experience, however, 
has shown that, at least in the case of strongly dissipative systems, many 
characteristic features of a complex nonlinear dynamic system can be 
extracted from a stroboscope-like discretization in time of a single dynamic 
trajectory x~(t). That is, in many cases it is sufficient to focus on one of the 
variables x~(t) at successive intervals {x~(to), x~(to + r), x~(to+ 2r),...}. 
This yields an approximation to the complex flow in (1.1), which takes on 
the form of a one-dimensional, discrete, noisy dynamics, (4 7) 

X,+x=f(x, ,)b)+~, (1.2) 

The predictions of such discrete map dynamics have proven to be not only 
qualitatively correct, but often even quantitative. (s 7) The recent flood of 
research on chaos in nonlinear, deterministic, discrete systems (e.g., see 
Refs. 6 and 7 for reviews) shows that the phase space of even the simplest 
nonlinear system may contain several basins of attraction, i.e., disjoint 
regions in phase space, each composed of all the points from which the 
attractor can be reached upon elapsing time by the deterministic flow. For  
example, in three dimensions the forced Duffing oscillator 

-~1 : X 2  

22= --7x2 + x l - - 4 x ~  + A  cos x3 (1.3) 

.~3 = 0,) 
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shows for the same set of control parameters (A, co) two locally stable 
cycles; i.e., it exhibits bistable behavior. Indeed, it is well known that the 
amplitude response curve X = ( x 2 + x ~ )  1/2 versus frequency co shows a 
characteristic bend (Ref. 9, Fig. 32); i.e., one observes a hysteresis 
phenomenon. 

The case of the coexistence of stable (or unstable) attractors can be 
destabilized by a change in control parameter values; thereby one merges 
two independent attractors into a single one via transfer through an inter- 
mediate region which is visited only sporadically. This is the situation of 
deterministic diffusion, (1~ where the infrequent deterministic hopping 
leads to a low-frequency tail of the spectral density (Ref. 13, in particular 
Fig. la; also see Refs. 14-18). Alternatively, when the above coexistence is 
stable, application of noise of internal or of externally imposed origin may 
induce transitions between two otherwise disjoint regions of phase space. 
Noise-induced hopping between different attractors has been investigated 
in the Duffing oscillator via analog simulations in Ref. 17 and via digital 
simulations in Ref. 13. 

Escape times have been estimated in Ref. 19 near the point where an 
attractor collides with an unstable stationary point, thereby losing its 
stability (so-called crises). (18) In this situation of deterministic dynamics 
(absence of random perturbations) the invariant distribution is strongly 
peaked at the edges of the basin of attraction. Thus, the escape times are 
almost entirely determined by the statistics of single jumps, being induced 
by externally applied small noise. Series of two or more jumps, which 
finally drive the system out of the basin of attraction, can be neglected in 
this very situation near a crisis. In this work, we rather focus on an 
opposite situation in which single jumps out of the basin of attraction yield 
only a negligible contribution to the rate. 

The emphasis of this work will be on noise-induced escape rates and 
mean first passage times (MFPT) from a stable fixed point of a discrete 
map. In particular, our focus will center on noisy circle maps 

Xn+ l=  Xn + g2 + a sin(2~Xn) + ~n (1.4) 

The statistical properties of deterministic circle maps have been widely 
reported in the literature. (11 24) Equation (1.4) without the noise term is a 
popular mathematical model describing the deterministic behavior of 
periodically forced, nonlinear oscillator systems, such as occurs for the 
driven pendulum, phase-locked loops, or ac-driven Josephson 
junctions. (11-17'19-24) The dynamics of the map in (1.4) is extremely rich, 
exhibiting bistability, deterministic diffusion, cascading period-doubling 
bifurcations, phase locking, and chaos. (H 17,19 24) Even when s =0,  the 
phase diagram is still rich (see Fig. 2 in Ref. 11 or Fig. 11 in Ref. 12), 
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possessing limit cycles, period-doubling, deterministic diffusion, and 
running solutions, if a >  1/(2n). For  all a >  0, the cell boundaries x = 0, 
_ 1, _ 2 .... are unstable fixed points. The cell midpoints 2 = �89 n are stable 
fixed points for a e (0, 1/n), and they become superstable at a = 1/(2n); a 
bifurcation to a period-2 solution occurs (u) for the control parameter value 
a = 1/m In the following we shall restrict the discussion to the regime 
a e ( 0 ,  1/(2n)); i.e., for zero external driving, g?=0,  the noisy discrete 
dynamics is given by 

X n + l = f ( x , ) + 4 n - x , + a s i n 2 n x , + ~ , ,  0 < a <  1/(2n) (1.5) 

The random forces {~}  are assumed to be independent and identically 
distributed according to a probability density p(~), 

P[~,,~ (4, 4+d~)]=p(4)d~ (1.6) 

with a vanishing mean ( r  Taking the stable fixed point Xo = 1/2 as 
the point of reference, our focus is on the noise-induced escape from the 
domain I =  [-0, 1 ] of attraction of x 0. With an unbounded random force 
~,, i.e., p(r > 0 for all finite 4, the escape from the stable fixed point Xo will 
occur with certainty, even for arbitrarily small noise strength ( ~ ] )  > 0. By 
contrast, for a bounded noise source, i.e., p (~ )=  0 for all 131 > ~0, this need 
not be the case. For  example, if 0 < 4 0 <  l/a, the noise-limited map 
functions (Ref. 25, in particular Section 3.1) 

X n  + 1 = X n  31- a sin 2nxn _ 4o (1.7) 

possess shifted stable fixed points x+_ within I =  [0, 1 ]. As a consequence, 
the stationary probability of x ,  in the presence of noise is nonvanishing 
only on the subinterval (x_ ,  x + ) e / ,  and zero outside. Therefore, an escape 
from Xo is impossible. 

2. N O I S E - I N D U C E D  I N V A R I A N T  PROBABIL ITY:  
CASE OF S M A L L  N O N L I N E A R I T Y  

Let us consider the map dynamics (1.5) with ~n being an independent, 
identically distributed random perturbation of unbounded support. 
Throughout  this paper we shall restrict the discussion to additive noise ~,. 
A generalization of our results for multiplicative noise 

r162 (2.1) 

is straightforward, but will not be implemented here, for the sake of clarity. 
The distribution p(~) of the unbounded random variable can be arbitrary. 
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For  our  explicit calculations,  however ,  we use a Gauss ian  of vanishing 
mean  

1 ~2 
p(r  - (27zg)77~ exp - ~ (2.2) 

Due  to the independence of {, and ~m, (n:~m), the process x~, (1.5), is a 
M a r k o v  process. Let  

= f  ~176 P(xl y) ~ d~ 6 ( x - f ( y )  - ~) p(~) 

=p(x-- f (y ) )  

1 I x  _ f ( y ) ] 2  
(2.3) - (2~te)v2 exp 2e 

denote  the t ransi t ion probabi l i ty  to go f rom x ,  = y to x n + 1 = x in a single 
step. Then,  the probabi l i ty  Wn(x) to find x in the interval (x, x+dx)  
satisfies the mas ter  equa t ion  (26'27) 

m n + , ( x )  = dyP(xly)  W,,(y) (2.4) 
- - o o  

More  generally, one obtains  for the condi t ional  probabi l i ty  Pn(xly) to get 
in n steps f rom y into (x, x+_dx), in virtue of  (2.3), (2.4), the forward 
equat ion  

Pn+l(x ly)=f  dzP(xlz)e, ,(zly),  Po(zly)=g)(z- y) (2.5) 

Likewise, one finds f rom taking the adjoint  in (2.5) the backward equat ion 

Pn+l(ylx)= f dz Pn(ylz) P(zlx) (2.6) 

Before we investigate in more  detail the invar iant  probabi l i ty  W(x), i.e., the 
eigenvalue (/z, = 1 ) solut ion of (2.4), 

f 
ox3 

W(x) = dy P(xI y) W(y) (2.7) 
coo 

we define a class of  m a p  functions { f ( x ) }  [see (1.2)] with the charac-  
teristic p roper ty  that  f (x )  deviates only weakly f rom the identity map.  
Specifically, we consider the class 

dr(x) 
f (x)=-x--a  - ,  a ~ l  (2.8) 

dx 
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where a > 0  is small and U(x) is an even, bounded function such that 
x0 = 1/2 is a stable fixed point and the cell boundaries x = 0, x+ = 1 are 
unstable fixed points. Clearly, Eq. (1.5) with a < 1/(2~) is a member of (2.8) 
with 

1 
U(x) = ~ cos(27zx) (2.9) 

Typical members of the set of functions {f (x)} ,  (2.8), are sketched in 
Fig. 1. If we combine (2.7) with (2.3) and (2.2), the invariant probability 
W(x) for the class (2.8) explicitly reads 

, ; .  {1 } 
W(x)-(27z~)l/2 - ~ e x p  - ~ [ x -  y+aU'(y)]  2 W(y)dy (2.10) 

where U'(y) denotes the derivative dU(y)/dy. Generally, (2.10) cannot be 
solved exactly. An exception presents the linear map dynamics with U(x) = 
~co2x 2. This yields the exact result 

W ( x ) l i  . . . .  = Z 1 exp[ -- (2a~ 2 - a2~4)x2/(2e)] (2.11 ) 

With a small, (2.10) can be solved approximately. Setting 

u =- (x -- y + aU'(y)/(2e) 1/2 

. . , /  JS 
�9 . . ." / . / ' " ' "  

/ 
/ 

/ 

Fig. 1. 

f I 
/u s u 

/ 

Typical members of the map  functions (2.9) exhibit one stable (s) fixed point and two 
unstable (u) fixed points at the cell boundaries. 
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we find 

y = x - (2e)l/2u + a U ' [ x  - (2e)l/2u] + O ( a  2) (2.12) 

A substitution of (2.12) into (2.10) yields 

W ( x )  = _ ~  1 - a U " [ x -  (2e)l/2u + O(a2)] 

x e x p ( - u  2) W { x  - (2e)l/2u + U ' [ x -  (2e)l/2u] + O(a2)} 

= W(x) + a(U'W')' +~ w"+ O(a 2) 

Integrating the differential form 

a ( U ' W ' ) '  ~ ..... + ~ e w  = 0  (2.13) 

twice, one obtains for the approximate invariant probability 4 

W ( x ) =  Z - ~  exp  [ 2 a U ( x )  ( ~ ) ]  - - + O  (2.14) 

For the climbing sine map (1.5) we obtain the periodic invariant 
probability 

v acos(2~x)], 
W ( x ) = Z - l e x p [  ~ 3 a ~ l  (2.!5) 

This invariant probability enters the result for the MFPT at low noise 
intensity, to be considered in Section 3.2. 

3. DISCRETE D Y N A M I C S  A N D  METASTABIL ITY:  
M E A N  FIRST PASSAGE T I M E  

In this Section, we elaborate on the noise-induced escape of circle 
maps of the type in (2.8). In particular, we consider the equation obeyed by 
the MFPT of the random variable z (x ) ,  the random time to leave the 
domain of attraction I =  [0, 1] for the first time, without ever returning 
into/ ,  if the random walker started out at x~_0= x. 5 

4 In the derivation of (2.14) we did not make use of the fact that f ( x )  = x -  aU ' ( x )  refers to a 
metastable situation; only the limit a ~ 1 has been utilized. Thus, the approximation in (2.14) 
holds for more general functions f ( x ) ,  not restricted to describing noise-induced bistability. 

5The results of Sections 3 and 4 were presented at the Statphys-16 Conference, Boston, 
August 10-15, 1986. 
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3.1. Integral Equations for the Moments of the First Passage 
Time Variable 

To begin, let W(n[x) denote the probability that up to time n a 
random walker that started out at x in I has not yet left the domain of 
attraction. By use of (2.6), we have 

W(n Ix) = ;x/;~(y I x) dy (3.1) 

where/3,(xl y ) is the probability to reach x in n steps without having left L 
The probability/~, obeys the backward equation 

P.+ ~(x[ y)=fPn(xlz)P(zl y)dz 

where we have introduced 

(3.2a) 

~P(x y), y in I 
/)I(Xl Y) =/3(xl Y) = t0, otherwise (3.2b) 

W(nlx) in (3.1) is obviously a decreasing function with n increasing; it 
accounts for the fact that an escape becomes more and more likely with 
increasing n. On noting that an exit between n and (n + 1) occurs with 
probability W(nlx)-  W(n + l lx), we readily obtain the MFPT t~(x) as 

tl(x) = (~(x))  

= ~ (n+l )[W(nlx ) -W(n+l lx ) ]  
n = 0  

= ~ W(nlx) (3.3) 
n=O 

On the other hand, by integrating the backward equation (3.2) over y, 
summing over all n, one obtains in view of (3.3) the integral equation 

where 

t l ( X  ) - -  )~,(X) = ~1 ~(ylx) / l ( Y )  d y  

= P(ylx) tl(y)dy 
0 9  

tl(x) =0,  x outside I =  1-0, 1] 

(3.4a) 
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and 

Z~(x) = ~1 if xinI  
(3.4b) 10 otherwise 

Thus, the MFPT for a discrete dynamics is governed by an inhomogeneous 
integral equation. This result, (3.4), was first derived in Ref. 28. 

It is also possible to derive explicit integral equations for the second 
and higher moments of r(x); i.e., 

tin(X)= ~ (n+l)m[W(n[x)--W(n+llx)], m>~l (3.5) 
n=O 

For example, the second moment obeys 

t2(x ) -- 211(x) -~- ZI(X)~- f, P( y I x) t2(y) dy (3.6) 

Exact solutions of (3.4) and (3.6) are not possible, in general. No solutions 
of (3.4) or (3.6) have been found. For the class of map functions in (2.8) 
one has for x in I from (2.3) and (3.4) the integral equation 

t~ (x) -  1 = p(y-x+aU'(x))q(y)dy (3.7) 

Equation (3.7) has a unique solution if 

fop(Z) dz 1 < 

In this case one can show that the homogeneous equation in (3.7) only 
possesses the trivial solution q(x)=0. Moreover, with 0 and 1 both exit 
points for r(x), tl(x ) attains its maximal value at x o = �89 Setting t l (1/2)= T, 
it follows from (3.7) that 

T - - l =  p(y-�89 tl(y)dy 

<-..Tf~ p(y-�89 dy 

i.e., the MFPT obeys the inequality 

1 
tl(X) ~< T~< 1 - ~o ~ p(y - �89 dy - Ta (3.8) 
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TA, as the inverse of the probability to leave the interval of attraction in a 
single step starting from x0=�89 represents an upper bound for I I (X ). The 
estimate TA just coincides with the approximation of Arecchi et al. (19~ 
Moreover, in contrast to the usual case of Fokker-Planck processes, (1'21 
t l (x )=  t i ( 1 - x )  possesses a jump 6 at x (or x+). 7 Sitting at a boundary 
point, say x = 0, the random walker will reenter the interior of the inter- 
val (0, 1) with probability p = ~ P (y l0 )  dy. Consequently, the mean first 
passage time from x _ - - 0 ,  tm(0), is larger than the unit time step. An 
estimate of the jump is obtained from (3.4) at x = 0, 

t l ( O ) - -  1 =  p(y) tl(y)dy 

or (3.9) 

tl(O)= CT+ 1 >0 

where, with tl(x)= T~(x), h(x)<  1, and symmetric noise, p(y)= p ( -y )  

C= f~ p(y) h(y)dy<~ (3.10) 

Figure 2 depicts the qualitative behavior of the MFPT tl(x). Clearly, all of 
the characteristic difficulties, such as boundary jumps and absorptive lines 

6 Similar jumps  for the M F P T  occur for continuous-time processes driven by non-Gaussian 

noise sources; see Refs. 29-32. 
7 Note that for a Fokker-Planck process the continuity of the mean first passage time is due 

to the highly irregular behavior of the trajectory of a Wiener process: such a trajectory 
crosses a certain level infinitely many times within an arbitrarily short amount  of time, once 
the first crossing has happened. 

i I ~ X  
0 I 

Fig. 2. Qualitative sketch of the M F P T  t(x), (3.4), versus x. Illustrated are the absorbing 
lines outside the domain  of attraction, as well as the typical boundary jumps  at the exit points. 
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( - 0 %  0 - )  and (1+, ~ )  (see Fig. 2), are inherent in the integral operator 
structure (3.4). 

3.2. The Weak Noise Analysis of the MFPT 

At a weak noise level, ( ~ 2 ) = e ~  1, the M F P T  attains a very large 
value, of the order of the escape time from the metastable fixed point 
Xo=2 . Furthermore, tl(X) essentially approaches a constant value 
t~(x) ~- T, inside the domain of attraction. Deviations of t~(x) from the 
constant T primarily occur near the boundaries of the domain of attrac- 
tion. Therefore, we can set 

tl(X) = T'h(x), ~(1) = 1 (3.11) 

If we insert the ansatz (3.11) into (3.7), we find 

f2 "~(x)- r - '  = p ( y - x +  aV'(x)) "~(y) dy (3.12) 

In view of the characteristic behavior of tl(x) (see Fig. 2), ~(x) varies 
within a boundary layer region of width e ~/2, and takes on an 
approximately constant value inside the domain of attraction. The focus in 
(3.12) is thus on the variation of h(x) near the unstable fixed points x = 0 
and x+ = 1. For  example, if we linearize (3.12) within the boundary layer 
of width e 1/2 around x = 0, we can write for the scaled boundary layer 
function h(x), 

h(x) = h((2e)l/2x) (3.13) 

the integral equation 

= e x p [ - ( y - A x )  2] h(y)dy (3.14a) 

Here, we made use of (2.2) for 0(3), and 

A -- 1 -aU"(O)> 1 (3.14b) 

In addition, we have neglected the small inhomogeneous contribution T ~ 
[see (3.8)] and approximated the upper limit of integration 1/e by infinity. 
The asymptotic behavior of the scaled boundary layer function h(x) is nor- 
malized such that h(x) --, 1 for x ~ oe. For  the derivative of (3.14) one ends 
up with the inhomogeneous integral equation 

h'(x) = ~ e x p [ -  (Ax) 2] h(0) + Am o~ x/rc x/~ fo d y e x p [ - ( y - A x ) 2 ] h ' ( Y )  

(3.15) 

822/48/1-2-16 
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In the asymptotic regime ( x ~ o o ) ,  (3.15) simplifies to give, with u =  
y - Ax, 

_ A f ~  duexp(_u2)h, (u+Ax)  (3.16a) 

If we replace the lower integration limit by - o o ,  the solution of (3.16a) 
yields the asymptotic behavior 

h ' ( x ) = e x p [ - ( A 2 - 1 ) x 2 ] ,  x ~ oo (3.16b) 

Applying Nystr6m's method, (33) we obtain a numerical solution of h(x) 
conveniently from (3.15). Results for the normalized, scaled boundary layer 
function h(x) are depicted in Fig. 3. 

An explicit expression for the constant part T can be obtained in a 
similar way as in the Fokker-Planck case(34): First we multiply (3.7) with 
the invariant probability W(x), and integrate over all x in I =  [0, 1]; i.e., 

tl(x) W(x) d x -  W(x) dx 

;2f  = dx dyP(y]x)  t~(y) W(x) 

= dx dyP(y l x )  t~(y) W(x) 
- - c O  

= dyt l (y)  W ( y ) -  + dx dyP(y[x)  tl(y) W(x) (3.17) 
0o  

In the last step, we made use of the invariant property (2.7). With (3.11) we 
thus find the central result 

T 1= (~~  W ( x ) ~ d y P ( y l x ) h ( Y ) - T Z ~ + T ~ '  (3.18) 
S+ W(x) dx 

Here, T refers to the escape time via the left exit point x = 0, being 
determined by the (~o_~ dx. . . )  contribution, and T+ is defined correspon- 
dingly. The result (3.18) is an exact expression for t(�89 T. At weak noise, 
e ~ 1, (3.18) can be simplified further: At the fixed points x , Xo, and x+,  
W(x) is sharply peaked. Moreover, if 2 denotes a fixed point 

f()? + r/)-- 2 + r//'(2) = 2 + [1 -- aU"(2)] t/ 
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h ( x )  I , , r I ' ' ' ' I ' r , , I ' 

1 . 0  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 

F i g .  3. 

z.-;;.J J -  .1t- ! 
/ "  / "  / /  J ~ l  

- / , / ' / ,  / /  ~ 
, / / l /  

_ i / /  / / ~ : 1.o~ - 

I1'1 1 / / A: 1.03 

/1,"/ / 
, ; ; I / / I  

4 

0 2 4 6 8 x 

N u m e r i c a l  s o l u t i o n  o f  t h e  s c a l e d  b o u n d a r y  l a y e r  f u n c t i o n  (3 .14 ) ,  ( 3 . 1 5 )  f o r  v a r i o u s  A 

v a l u e s  [ s e e  ( 3 . 1 4 b ) ] .  

the Gaussian approximation to (2.10) reads 

W(x)~- W(2)exp({[1-aU"(2)]2-1}(2-x)2/(2~))i x~-2 (3.19) 

With a steepest descent approximation the denominator in (3.18) becomes 

2 ~ e  . ) i/2 
fo W(x) dx~-(1-  [l -aU (�89 W ( ~ )  (3.20a) 

For a small nonlinearity a, this simplifies further [see (2.14)] to give 

C' ( ),j2 2<,v(�89 W(x) dx ~_ \aU,,(1) j exp ~ (3.20b) Jo 

The numerator simplifies as well. In the same spirit as above, we can write 

f2oo dx W(x) f2 dy P(yix) h(y) 
;o 

~- W(0)(2~e) 1/2 dxexp({[l_aU,(O)]2 1}x2/(2e)) 
- - o o  

f2 x dy h(y)exp{-[y-x+ag'(x)]2/(2e)} (3.21) 



244 Talkner e t  al.  

Upon combining (3.21) with (3.20), we find for T the expression 

T = (2ge)1/2{1- [1-aU"(Xo)-]  2} 1/2 

x { f  ~ 0o dxexp[(A2-1)x2/(2e)] 

, }' 
x fo dy h(y) exp[ - (y - Ax)2/(2~)] 

• w(�89 (3.22) 

A corresponding result holds for T+. The leading exponential part of the 
escape time is read off from (3.18) and (3.22) as 

W(�89 1 2a 
Toc W(0)+  W(I) ~exp--rce (3.23) 

The expression (3.22) is an appealing result for the M F P T  at weak noise. It 
can be evaluated further as follows: The denominator in (3.22) obeys, in 
terms of the scaled variable x -  (2e)l/2x, 

dx dyP(ylx)h(y)  W(x)~e'/2W(O)R(A), e ~ l  
- -  o 0  

where 

R(A)=fo  dy[1 - ~b(Ax)] h(y)exp[(A 2 -  1)y 2] (3.24) 

Here, we replaced the upper integration limit occurring in (3.24), 1/(2e) '/2, 
by infinity. ~b(x) denotes the error function. R(A) is an z-independent 
function, whose numerical behavior is depicted in Fig. 4. Within the 
numerical accuracy, the result of R(A) is excellently approximated by (see 
Fig. 4) 

R(A)= 2x/- ~ (A 2 l) (3.25) 

Inserting (2.9), (3.20b), and (3.25) into the result (3.22), one explicitly finds 

l 2 a  a 
T = ~a exp ~ = T+, -e > 1 (3.26) 

This is the main result of the weak noise analysis. In obtaining (3.26) we 
made use of the numerical solution of the boundary layer function h(x), 
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which indirectly enters in (3.25). An approximate, fully analytical treatment 
for h(x), respectively T , will be presented in the following subsection. 

In the remainder of this subsection we compare the MFPT at weak 
noise, (3.22), with closely related transport coefficients. First, there is a 
relationship with the rate of escape 2. In terms of the forward rate 2 + and 
the backward rate 2 -  the rate of escape is related to T by 

)v = 2 + + 2 -  = 1/(2T) (3.27) 

The factor of one-half takes into account that, in absence of a capture 
beyond the unstable fixed points x = 0 ,  x+ = 1, half of the number of 

(~/A2-1) I/2R (A) 

1 . 0  

0 . 9 5  

0.90 

0.85 

0.80 

0.75 t I l 

I(A2_I~I/2 0.i 0.2 0.3 0.4 

Fig. 4. ( --)  Scaling function R(A) in (3.25) versus (A 2 -  1) L/2 compared against ( x )  the 
numerical results. 
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particles would return into the domain of attraction. (351 Likewise, )~+ is 
given by 

)~+ = 2 -  = �89 1/2T (3.28) 

2T corresponds to the M F P T  of a random walker that is allowed to exit at 
one boundary only. In the absence of any capture, the random walker 
undergoes a noise-induced diffusive motion with a diffusion coefficient D 
given by 

( ( x , , -  (xn)) 2) , 2Dn (3.29) 
n ~ o o  

D itself is determined via the rates and the step size, (x + - x _) = 1, i.e., 

D=�89 + + ) o - ) ( x + - x  )2=1/ (4T)  (3.30) 

3.3. Approx imate  Analyt ical  T rea tment  

Unlike the case of Fokker Planck processes, (1 3.34) there is no stan- 
dard method that enables one to obtain the boundary layer function h(x) 
[(3.14), (3.15)] in closed form. As already mentioned, for weak noise the 
function h(x) is an almost constant function in the domain of attraction I, 
apart from a crucial change in a narrow region around the unstable fixed 
point(s). From (3.14) we see that h(x) depends on the map function U(x) 
only via U'(O)< 0. In the following, we seek to approximate the behavior 
of h'(x) by its asymptotic behavior (3.16b) for large values of x; i.e., we set 

h'(x) ~ e x p [ -  (A a -  1)x 2] (3.31) 

Then, h(x) is readily integrated to give 

haS(x)=h~ [ l + fXo h'(y) dyl (3.32a) 

with 

has(O)=[l + foh'(y)dy] -1 (3.32b) 

This extrapolated asymptotic function is compared with the numerical 
solution of the integral equation in Fig. 5 for a particular value of A. 
Significant deviations apear for small values of x. 
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Fig. 5. ( - - )  Numerical solution of the scaled boundary layer function (3.14), h(x), and ( - )  
the extrapolated asymptotic curve (3.32), M~(x), for the same value of A = 1.025. 

A straightforward, although somewhat cumbersome evaluation of the 
integrals in (3.32) and (3.24), involving error functions, then yields for 
(3.22) the answer 

2 -In 2a 
T as - exp - -  (3.33) 

- 2 a  ~ s  

The sensitivity of the integrals (3.32) and (3.24) with respect to the small-x 
behavior of h(x) shows up in a different factor 2 J/2 in (3.33) compared 
with the exact prefactor in (3.26). 

4. DISCRETE D Y N A M I C S  A N D  METASTABIL ITY:  
RATE A P P R O A C H  

In the previous section, we presented the method of the MFPT related 
to the rate by (3.27). The concept of the MFPT, however, is plagued by 
difficulties, which originate from the integral equation obeyed by the 
MFPT, (3.4), or the integral equation obeyed by the boundary layer 
function h(x), (3.14) and (3.15). Although there exists a direct relationship 
between the MFPT and the rate, there are alternative methods available, 
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which prove to be more suitable if one seeks only the rate itself. Following 
some ideas pioneered by Kramers, ~ one can express the rate in terms of 
a net probability current at the exit point that results if one continuously 
injects particles into the domain of attraction, which are then captured 
beyond the exist point(s). This perturbation of the system dynamics builds 
up a stationary nonequilibrium current, carried by a nonequilibrium 
invariant probability Wo(x). If we consider the backward rate )~ , we can 
write 

2 = net probability current at x_  = 0 =--J~ (4.1) 

population in the domain of attraction no 

The stationary, flux-carrying probability Wo(x ) obeys 

mo(x)=~ (x) m(x)= p(xly) Wo(y)dy (4.2) 
- - o O  

The form function q (x) in (4.2) describes the deviation of the current- 
carrying probability Wo(x ) from the zero-current carrying invariant 
probability W(x), (2.7). Outside the domain of attraction, Wo(x ) will 
approach zero rather rapidly, with its characteristic change occurring near 
the exit boundary. Inside the domain of attraction the equilibrium will be 
perturbed only slightly. Thus, we expect a qualitative behavior for t / - (x)  as 
sketched in Fig. 6. 

In terms of Wo(x ) the current J o  reads 

;Ofo  ;oO;O- Jo = dx P(xl y) Wo(y) d y -  dx P(x[ y) Wo(y ) dy (4.3) 
c O  - -  ~ ,  

s See Ref. 37 for a recent review of the rate approach. 

J % 
o 

CAPTURE INJECTION 

D 

,,.9 (x) 

X 

Fig. 6. Typical behavior of the form function q-(x) describing the deviation from the 
equilibrium invariant probability. It changes drastically within the boundary layer width 
(2~)'/2. 
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The first term describes the flux out of f =  (0, oo), while the second term 
compensates for particles that flow into the domain I. The population no is 

n o = Wo(x  ) dx (4.4a) 

With ~ / - (x )~  1 for x in (0 +, 1 ), n o can be approximated by 

no ~- W(x) dx (4.4b) 

minimum around x = 0 ,  x = l ,  and r / - (x)  
constant value only within a narrow width 

because W(x) attains its 
markedly changes from its 
around x = 0. Now we focus on the behavior of 17-(x) near x ~-0: For  the 
invariant probability we have in the limit of weak noise e ~ 1 [see (3.19)] 

W(x) ~- W(O) exp[-(A 2 - 1 )x2/(2~)], x - 0 (4.5a) 

and for the transition probability 

P(xry)~-(2~ze)-~/2exp[-(y-Ax)2/(2~)],  x~-O (4.5b) 

Thus, in the neighborhood of (x ~_ 0, y -~ 0), one finds the detailed balance 
relation 

P(xl y) W(y)= P(y lx )  W(x) (4.6) 

From (4.2), one then finds in the regime around x = 0 

t l-(x) W(x) ~ - (27ce) ' / 2exp[ - ( y -Ax )2 / (2e ) ]  t 1 (y) W(y)dy (4.7) 
o(3 

Utilizing the detailed balance relation in (4.6), one obtains the integral 
equatio n 

t l - (x)  = (2~e) -~/2 t/ (y)  exp[ - ( y  --Ax)2/(2e)] dy (4.8) 
- - o o  

The solution of (4.8) with the normalized asymptotic behavior r/ (x) -~ 1, 
x ~> 0, is readily found to read 

( A ~ - - l ~ l / ~ f ~  ( A ~ - - I ) / ~  
tl- (x)= \ ~ ]  dy exp 2~ (4.9) 

In agreement with the sketch in Fig. 6, r/ (x) rapidly approaches 1 for 
x > 0, and decreases rapidly for x < 0. 
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With (4.9), (4.6), and (4.5) the current J0  can be evaluated to yield 
the weak noise result (see also the Appendix) 

J o  =�89 '(0) W(0)= [(A 2 -  1)/2~c~]1/2�89 (4.10) 

By use of (3.20b) for the population no, (4.4b), the backward rate 2 reads 
for the climbing since-map explicitly 

\ 2~e ] L ~ze A W(�89 (4.11) 

This result equals (3.28) with T given by (3.26); i.e., the rate 2 equals 
one-half of the inverse mean first passage time T . The total rate 2 is 
readily found to be 

2 = 2 2 -  = 2a exp(-2a/~e) (4.12) 

Note that the underlying assumptions inherent in (4.11) and (4.12) are 
based on the steepest descent approximation (3.20), (3.21), and a small 
nonlinearity, a < 1/(2~). This implies that the Arrhenius factor 2aloe in the 
rate expressions (4.11) and (4.12) must exceed the order of unity in order 
to present a meaningful result. Thus, the behavior of the rates in the limit 
a ~ 0 with e kept fixed is not within the regime of validity of (4.11) and 
(4.12). 

5. C O N C L U S I O N S  

In this paper we have considered the escape dynamics of periodic, 
discrete maps perturbed by noise. In particular, we have evaluated in the 
limit of weak noise and small nonlinearity a the mean first passage times 
and the escape rates. Based on the exact integral equation for the MFPT,  
(3.7), we found an upper bound on the MFPT,  (3.8), which is solely deter- 
mined by the noise probability. 

If one confronts the results in this paper with those for time- 
homogeneous Fokker-Planck processes, one detects several characteristic 
differences. First we note that the M F P T  exhibits, in contrast to the 
Fokke~Planck  case, a jump [see (3.10)] at the exit boundaries, which in 
size does not exceed half of the maximal value of the MFPT.  Moreover, 
one observes from the structure in (3.18) that the mean first passage time 
dynamics of a discrete metastable map requires additional information 
from the dynamics outside the domain of attraction. This is in clear 
distinction to the mean first passage time T vp of a Fokker-Planck process, 
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such as, e.g., the well-known result for the one-dimensional diffusive 
motion of a particle in a metastable potential well: 

( zr )l/2~wen W(x) dx 
TVP =- D(O) ~U"(O)[ W(O) 

where D(x), U(x), and W(x) denote the diffusion coefficient, the potential, 
and the stationary probability, respectively, and where the barrier is 
located at x = 0. 

An analytical treatment of the integral equation (3.4) for t(x), or 
(3.15) for the boundary layer function h(x), is characterized by several 
difficulties. Clearly, none of the integral equations occurring in Section 3 is 
of a standard type such as, e.g., the convolution type or the Wiener-Hopf  
type. Only due to the numerically established scaling relation (3.25) have 
we been able to evaluate the M F P T  (at weak noise) explicitly. 

In contrast, the rate approach in Section 4 is rather direct, whereby 
one bypasses some difficulties inherent with the integral equation for the 
MFPT. The result for the rate(s) in (4.11) and (4.12) renders the connec- 
tion with the inverse mean first passage time, i.e., it equals the familiar "one 
over two times the M F P T "  relationship well known from the Fokker -  
Planck case. (1,2,34,37,38) 

We are attempting to generalize the theory for the M F P T  to more 
general situations, such as, e.g., the hopping between two pairs of period-2 
attractors. The evaluation of the invariant probability entering (3.18), as 
well as the solution of the boundary layer function h(x), however, will be 
even more difficult. 

A P P E N D I X .  T H E  L I M I T  OF C O N T I N U O U S  T I M E  

Let us consider the multiple of a small time unit a in the limit a ~ 0; 
i.e., 

na=t for a -~0 ,  n ~ o o  (A1) 

Then, the map 

x.+l =f(x.)=x~-aU'(xn) 

becomes for a ~ 0 a continuous-time differential equation 

= - U ' ( x )  

In the case of a noisy map (1.2) 

X.+l=f(x.)+~. 

(A.2) 

(A.3) 

(A.4) 
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with the probability for the noise amplitude [see (2.2)] given by 

P[{,, e (4, { + d{)] = (2roe) 1/2 exp[ - ~2 / (2a ) ]  d~ (A.5) 

we consider the limit toward white Gaussian noise e ~ 0 such that 

D=g/a, g-+O, a-+O (A.6) 

is kept a constant. 
The generator F of the resulting stochastic process is determined from 

the backward equation 

q~(y) = lim 1 [ ~  P~(xl y)~(x)dx-(b(y)|7 F+ 
a ~ O  a I J  3 

(A.7) 

where, from (2.3), 

1 [ x - y + a U ' ( y ) ]  2 
P~(xl y) - (27cDa)1/2 exp 2Da (A.8) 

Using u = (x - y ) / , , ~  as a new integration variable, one finds 

F+O(y)=liml{f,~oa (2~D) l / 2 e x p  [u+a'/2U'(Y)]20(y+al/2u)du-O(Y)}2D 

D 
= -~ O"(Y) - U'(y) O'(Y) (A.9) 

In other words, the continuous-time limit (A.1) and (A.6) induces the 
Fokker-Planck dynamics 

0 D a2 
Vp,(x) = +~x [U'(x) p,(x)] +TTx~ p,(x) (A.10) 

With the result (A.10) in mind, the current in (4.10) can be evaluated if we 
consider the limit 

I (2)= lim 1jo(2  ) (A.11a) 
a~oa 

where [see (4.3)] 

o o  o o  

(A.11b) 
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T h e  c o r r e s p o n d i n g  resul t  is easi ly r ead  off  f r o m  (A.10) as 

1 - ( 2 )  = U ' (2 )  Wo(s ) + � 8 9  ) 

At  a s t a t i o n a r y  po in t ,  we have  U ' ( 2 ) =  0; i.e., a t  x = 0 

J - ( O )  = a I - ( O )  = �89  ) = �89 '(0) W(O) 

because  W ' ( 0 ) =  0 at  an  e x t r e m a l  point .  
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(A.12) 

(A.13) 
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